ASH-V/MTMH/DSE-1/23

B.A./B.Sc. 5th Semester (Honours) Examination, 2023 (CBCS) Subject : Mathematics Course : BMH5DSE13 (Point Set Topology)

Time: 3 Hours

Full Marks: 60

 $2 \times 10 = 20$

1 + 1

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Notation and symbols have their usual meaning.

1. Answer any ten questions:

- (a) State the axiom of choice.
- (b) Define product topology.
- (c) Define addition and multiplication of two cardinal numbers.
- (d) If u, v and w are cardinal numbers then prove that u(vw) = (uv)w.
- (e) Let (A, \leq) be a totally ordered set and $x \leq y$, $x, y \in A$. Prove that $A_x \subset A_y$, where A_x and A_y denote the initial segments determined by x and y respectively.
- (f) Let (X, τ) be a topological space. Prove that a subset G of X is open if and only if it is a neighbourhood of each of its points.
- (g) Let $(X, \tau), (Y, \tau')$ and (Z, τ'') be three topological spaces. Let $f: (X, \tau) \to (Y, \tau')$ and $g: (Y, \tau') \to (Z, \tau'')$ be two continuous functions. Prove that $gof: (X, \tau) \to (Z, \tau'')$ is continuous.
- (h) Define a cofinite topological space.
- (i) Prove that a topological space (X, τ) is connected if and only if it has no non-empty proper subset which is both open and closed.
- (j) Let A and B be two connected subsets in a topological space (X, τ) with $A \cap B \neq \emptyset$. Prove that $A \cup B$ is connected in (X, τ) .
- (k) Let Q be the set of rational numbers equipped with subspace topology of usual topology of \mathbb{R} . Examine if Q is connected.
- (1) Prove that each cofinite space is compact.
- (m) Let X be a compact space and Y be a T₂ space and $f: X \to Y$ be continuous. Prove that f is a closed map. 2
- (n) Show that a circle or a line or a parabola in \mathbb{R}^2 is not homeomorphic to a hyperbola. 2
- (o) Using the definition of a compact set, prove that the open interval (0, 1) is not a compact subset of \mathbb{R} , the real number space equipped with usual topology. 2

(7)

ASH-V/MTMH/DSE-1/23

2. Answer any four questions:

- (a) Prove that a sequentially compact metric space is compact.
- (b) Let $f: (X, \tau) \to (Y, \tau')$ be a function. When is f called closed? Prove that f is closed map if and only if $f(\overline{A}) \supset \overline{f(A)}$ for every $A \subset X$. 1+2+2
- (c) If u, v, w are cardinal numbers show that $(uv)^w = u^w \cdot v^w$.
- (d) Let (A, \leq) be a well ordered set. Prove that
 - (i) A is order isomorphic to no initial segment of A,

(ii) if $A_x \cong A_y$, then x = y.

- (e) Define a path connected space. Prove that every path connected space is connected. 1+4
- (f) Prove that a topological space is locally connected if and only if each component of an open set is open. 21/2+21/2
- 3. Answer any two questions:
 - (i) Prove that for any two cardinal numbers u and v, either $u \le v$ or $v \le u$. (a)
 - (ii) If u, v and w are cardinal numbers, then prove that $u^{v}u^{w} = u^{v+w}$. 5 + 5
 - (b) (i) Prove that a compact subset in a metric space is closed and bounded.
 - (ii) When is a topological space said to be locally connected? Is every connected space locally connected? Support your answer. (2+3)+(1+4)
 - (i) Let (X, τ) and (Y, τ') be two topological spaces and $f: X \to Y$ be a mapping. Let $\{x_n\}$ (c) be a sequence in X converging to x. If f is continuous then show that the sequence $\{f(x_n)\}$ converges to f(x) in Y. Does the converse hold? Support your answer.
 - (ii) Let C be a connected subset of a topological space (X, τ) . Show that \overline{C} is connected. Hence or otherwise show that component in a topological space is closed. (2+4)+(3+1)
 - (d) (i) Define a locally compact space. Prove that a closed subset of a locally compact space is locally compact.
 - (ii) If u, v, w are cardinal numbers, prove that $(u^v)^w = u^{vw}$. (1+4)+5

 $5 \times 4 = 20$

 $10 \times 2 = 20$

3+2